Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Adv Mater ; : e2401789, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577904

RESUMEN

The ternary strategy, in which one guest component is introduced into one host binary system, is considered to be one of the most effective ways to realize high-efficiency organic solar cells (OSCs). To date, there is no efficient method to predict the effectiveness of guest components in ternary OSCs. Herein, three guest compositions (i.e., ANF-1, ANF-2 and ANF-3) with different electrostatic potential (ESP) are designed and synthesized by modulating the electron-withdrawing ability of the terminal groups through density functional theory simulations. The effects of the introduction of guest component into the host system (D18:N3) on the photovoltaic properties are investigated. The theoretical and experimental studies provide a key rule for guest acceptor in ternary OSCs to improve the open-circuit voltage, that is, the larger ESP difference between the guest and host acceptor, the stronger the intermolecular interactions and the higher the miscibility, which improves the luminescent efficiency of the blend film and the electroluminescence quantum yield (EQEEL) of the device by reducing the aggregation-caused-quenching, thereby effectively decreasing the non-radiative voltage loss of ternary OSCs. This work will greatly contribute to the development of highly efficient guest components, thereby promoting the rapid breakthrough of the 20% efficiency bottleneck for single-junction OSCs.

2.
Ann Surg Treat Res ; 106(4): 218-224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38586555

RESUMEN

Purpose: Neoadjuvant chemotherapy is strongly recommended for advanced gastric cancer due to good local control and a high rate of R0 dissection with this strategy. Minimally invasive techniques such as laparoscopy-assisted or total laparoscopic approaches is becoming more and more acceptable in the treatment for gastric cancer. However, the safety and efficiency of total laparoscopic D2 gastrectomy (TLG) for advanced gastric cancer after neoadjuvant chemotherapy have not been well evaluated. Methods: A retrospective study in a single center from 2014 to 2016 was conducted. A total of 65 locally advanced gastric cancers were treated by laparoscopy-assisted gastrectomy (LAG) or TLG. Parameters which include operation time, blood loss, complications, hospital stay, 3-year overall survival, and 3-year disease-free survival were used for comparison. Results: The time of operation in the TLG group was shorter than in the LAG group (P = 0.013), blood loss was less (P = 0.002) and time to first flatus was shorter (P = 0.039) in the TLG group than that in the LLG group. Intraoperative and postoperative complications were comparable in both groups. No significant difference was found in 3-year overall and disease-free survival. Conclusion: For patients with locally advanced gastric cancer after neoadjuvant chemotherapy, laparoscopic D2 gastrectomy can be considered as a safe and efficient alternative. A further multicenter prospective randomized controlled study is needed to elucidate the applicability of this technique for advanced gastric cancer.

3.
J Med Chem ; 67(8): 6749-6768, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38572607

RESUMEN

Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment. Utilizing isosteviol, a natural ent-beyerene diterpenoid, 24 derivatives were synthesized and evaluated in vivo using a zebrafish model, establishing a deduced structure-activity relationship. Among these, derivative 5v exhibited significant efficacy in doxorubicin-induced cardiomyopathy in zebrafish and murine models. Subsequent investigations revealed that 5v selectively elevated SIRT3 expression, leading to the upregulation of SOD2 and OPA1 expression, effectively preventing mitochondrial dysfunction, mitigating oxidative stress, and preserving cardiomyocyte viability. As a novel structural class of SIRT3 activators with robust therapeutic effects, 5v emerges as a promising candidate for further drug development.


Asunto(s)
Cardiotónicos , Diterpenos de Tipo Kaurano , Diseño de Fármacos , Sirtuina 3 , Pez Cebra , Animales , Sirtuina 3/metabolismo , Sirtuina 3/antagonistas & inhibidores , Diterpenos de Tipo Kaurano/farmacología , Diterpenos de Tipo Kaurano/síntesis química , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/uso terapéutico , Cardiotónicos/farmacología , Cardiotónicos/síntesis química , Cardiotónicos/química , Cardiotónicos/uso terapéutico , Relación Estructura-Actividad , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Doxorrubicina/farmacología
4.
Environ Pollut ; 349: 123909, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582183

RESUMEN

Pteris vittata (P. vittata), an arsenic (As) hyperaccumulator commonly used in the phytoremediation of As-contaminated soils, contains root-associated bacteria (RAB) including those that colonize the root rhizosphere and endosphere, which can adapt to As contamination and improve plant health. As(III)-oxidizing RAB can convert the more toxic arsenite (As(III)) to less toxic arsenate (As(V)) under As-rich conditions, which may promote plant survial. Previous studies have shown that microbial As(III) oxidation occurs in the rhizospheres and endospheres of P. vittata. However, knowledge of RAB of P. vittata responsible for As(III) oxidation remained limited. In this study, members of the Comamonadaceae family were identified as putative As(III) oxidizers, and the core microbiome associated with P. vittata roots using DNA-stable isotope probing (SIP), amplicon sequencing and metagenomic analysis. Metagenomic binning revealed that metagenome assembled genomes (MAGs) associated with Comamonadaceae contained several functional genes related to carbon fixation, arsenic resistance, plant growth promotion and bacterial colonization. As(III) oxidation and plant growth promotion may be key features of RAB in promoting P. vittata growth. These results extend the current knowledge of the diversity of As(III)-oxidizing RAB and provide new insights into improving the efficiency of arsenic phytoremediation.


Asunto(s)
Arsenitos , Biodegradación Ambiental , Comamonadaceae , Oxidación-Reducción , Raíces de Plantas , Pteris , Microbiología del Suelo , Contaminantes del Suelo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Arsenitos/metabolismo , Contaminantes del Suelo/metabolismo , Pteris/metabolismo , Comamonadaceae/metabolismo , Comamonadaceae/genética , Rizosfera , Arsénico/metabolismo
5.
PLoS One ; 19(3): e0300240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547150

RESUMEN

Recommender system has made great strides in two major research fields, rating prediction and Top-k recommendation. In essence, rating prediction is a regression task, which aims to predict users scores on other items, while Top-k is a classification task selecting the items that users have the most potential to interact with. Both characterize users and items, but the optimization of parameters varies widely for their respective tasks. Inspired by the idea of transfer learning, we consider extracting the information learned from rating prediction models for serving for Top-k tasks. To this end, we propose a universal transfer model for recommender systems. The transfer model consists of two sub-components: quadruple-based Bayesian Converter (BC) and Prediction-based Multi-Layer Perceptron (PMLP). As the main part, BC is responsible for transforming the feature vectors extracted from the rating prediction model. Meanwhile, PMLP extracts the prediction ratings, constructs the prediction rating matrix, and uses multi-layer perceptron to enhance the final performance. On four benchmark datasets, we use the information extracted from the singular value decomposition plus plus (SVD++) model to demonstrate the effectiveness of BC-PMLP, comparing to classical and state-of-the-art baselines. We also conduct extra experiments to verify the utility of BC, and performance within different parameter values.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Teorema de Bayes , Aprendizaje Automático
6.
J Colloid Interface Sci ; 665: 772-779, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554467

RESUMEN

Effectively managing oxygen-containing functional groups (OCFGs) within activated carbon and methodically elucidating their intricate types and proportions are essential for considerably improving the electrochemical performance of carbon-based supercapacitors. Herein, we designed a ZnCl2-based molecular regulation strategy to introduce OCFGs into ramie-activated carbon (RAC), managing different OCFGs and revealing their structure-activity relationship with electrochemical performance. Thus, this regulated RAC, with a 3.5-fold enhancement in advantageous OCFGs (a-OCFGs: CO and COO), exhibits a supreme specific capacitance of 286.4F g-1 at 1 A/g and an excellent capacitance retention rate of 89.7 % at 20 A/g in an aqueous electrolyte, considerably surpassing that of nonregulated RAC (212.0F g-1 and 81.9 %). This confirms that a-OCFGs provide ample ion-storage accommodation and suppress solvent electronic oxidation, thereby enhancing electrochemical performance. Furthermore, its electrochemical performance is competitive with that of the commercial YP-50F (129.2F g-1 at 1 A/g). Therefore, this work not only highlights the contributions of specific OCFGs to high electrochemical performance but also designs a promising commercial electrode material to meet the demands of OCFGs-adequate carbon-based energy storage devices.

7.
Angew Chem Int Ed Engl ; 63(18): e202401518, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38459749

RESUMEN

The hole-transporting material (HTM), poly (3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT : PSS), is the most widely used material in the realization of high-efficiency organic solar cells (OSCs). However, the stability of PEDOT : PSS-based OSCs is quite poor, arising from its strong acidity and hygroscopicity. In addition, PEDOT : PSS has an absorption in the infrared region and high highest occupied molecular orbital (HOMO) energy level, thus limiting the enhancement of short-circuit current density (Jsc) and open-circuit voltage (Voc), respectively. Herein, two asymmetric self-assembled molecules (SAMs), namely BrCz and BrBACz, were designed and synthesized as HTM in binary OSCs based on the well-known system of PM6 : Y6, PM6 : eC9, PM6 : L8-BO, and D18 : eC9. Compared with BrCz, BrBACz shows larger dipole moment, deeper work function and lower surface energy. Moreover, BrBACz not only enhances photon harvesting in the active layer, but also minimizes voltage losses as well as improves interface charge extraction/ transport. Consequently, the PM6 : eC9-based binary OSC using BrBACz as HTM exhibits a champion efficiency of 19.70 % with a remarkable Jsc of 29.20 mA cm-2 and a Voc of 0.856 V, which is a record efficiency for binary OSCs so far. In addition, the unencapsulated device maintains 95.0 % of its original efficiency after 1,000 hours of storage at air ambient, indicating excellent long-term stability.

8.
Angew Chem Int Ed Engl ; : e202319177, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503693

RESUMEN

Considering that CO2 reduction is mostly a multielectron reaction, it is necessary for the photocatalysts to integrate multiple catalytic sites and cooperate synergistically to achieve efficient photocatalytic CO2 reduction to various products, such as C2 hydrocarbons. Herein, through crystal engineering, we designed and constructed a metal-organic framework-derived Zr/Ti bimetallic oxide solid solution support, which was confirmed by X-ray diffraction, electron microscopy and X-ray absorption spectroscopy. After anchoring Au nanoparticles, the composite photocatalyst exhibited excellent performances toward photocatalytic CO2 reduction to syngas (H2 and CO production rates of 271.6 and 260.6 µmol g-1 h-1) and even C2 hydrocarbons (C2H4 and C2H6 production rates of 6.80 and 4.05 µmol g-1 h-1). According to the control experiments and theoretical calculations, the strong interaction between bimetallic oxide solid solution support and Au nanoparticles was found to be beneficial for binding intermediates and reducing CO2 reduction, highlighting the synergy effect of the catalytic system with multiple active sites.

9.
J Clin Gastroenterol ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38457410

RESUMEN

BACKGROUND: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. METHODS: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. RESULTS: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. CONCLUSIONS: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.

10.
J Immunol ; 212(7): 1081-1093, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38380993

RESUMEN

Arthritis causes Fos-like 2 (Fosl2) inactivation, and various immune cells contribute to its pathogenesis. However, little is known about the role of Fosl2 in hematopoiesis and the possible pathological role of Fosl2 inactivation in the hematopoietic system in arthritis. In this study, we show that Fosl2 maintains hematopoietic stem cell (HSC) quiescence and differentiation while controlling the inflammatory response via macrophages. Fosl2-specific deletion in the hematopoietic system caused the expansion of HSCs and myeloid cell growth while affecting erythroid and B cell differentiation. Fosl2 inactivation enhanced macrophage M1 polarization and stimulated proinflammatory cytokines and myeloid growth factors, skewing HSCs toward myeloid cell differentiation, similar to hematopoietic alterations in arthritic mice. Loss of Fosl2 mediated by Vav-iCre also displays an unexpected deletion in embryonic erythro-myeloid progenitor-derived osteoclasts, leading to osteopetrosis and anemia. The reduced bone marrow cellularity in Vav-iCreFosl2f/f mice is a consequence of the reduced bone marrow space in osteopetrotic mice rather than a direct role of Fosl2 in hematopoiesis. Thus, Fosl2 is indispensable for erythro-myeloid progenitor-derived osteoclasts to maintain the medullary cavity to ensure normal hematopoiesis. These findings improve our understanding of the pathogenesis of bone-destructive diseases and provide important implications for developing therapeutic approaches for these diseases.


Asunto(s)
Antígeno 2 Relacionado con Fos , Células Madre Hematopoyéticas , Osteopetrosis , Animales , Ratones , Artritis/patología , Trastornos de Fallo de la Médula Ósea/patología , Diferenciación Celular , Hematopoyesis/genética , Osteopetrosis/genética , Osteopetrosis/patología , Antígeno 2 Relacionado con Fos/genética
11.
Opt Lett ; 49(4): 1061-1064, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359253

RESUMEN

We demonstrated an AlGaN-based multiple-quantum-well (MQW) deep ultraviolet (DUV) laser at 278 nm using a nanoporous (NP) n-AlGaN as the bottom cladding layer grown on the sapphire substrate. The laser has a very-low-threshold optically pumped power density of 79 kW/cm2 at room temperature and a transverse electric (TE)-polarization-dominant emission. The high optical confinement factor of 9.12% benefiting from the low refractive index of the nanoporous n-AlGaN is the key to enable a low-threshold lasing. The I-V electrical measurement demonstrates that an ohmic contact can be still achieved in the NP n-AlGaN with a larger but acceptable resistance, which indicates it is compatible with electrically driven laser devices. Our work provides insights into the design and fabrication of low-threshold lasers emitting in the DUV regime.

12.
Food Funct ; 15(2): 881-893, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38165856

RESUMEN

Trimethylamine-N-oxide (TMAO) is a risk factor for atherosclerosis. As a natural phenolic acid, protocatechuic acid (PCA) is abundant in various plant foods. The present study investigated the effect of PCA on TMAO-aggravated atherosclerosis in ApoE-/- mice. The mice were randomly divided into five groups and fed one of the following five diets for 12 weeks: namely a low-fat diet (LFD), a western diet (WD), a WD + 0.2% TMAO diet (WDT), a WDT + 0.5% PCA diet (WDT + LPCA), and a WDT + 1.0% PCA diet (WDT + HPCA). Results demonstrated that dietary TMAO exacerbated the development of atherosclerosis by eliciting inflammation and disturbing lipid metabolism. The diet with PCA at 1% reduced TMAO-induced aortic plaque by 30% and decreased the levels of plasma pro-inflammatory cytokines. PCA also improved lipid metabolism by up-regulating the hepatic gene expression of peroxisome proliferator-activated receptor alpha (PPARα). In addition, PCA supplementation enhanced fecal excretion of fatty acids and decreased hepatic fat accumulation. PCA supplementation favorably modulated gut microbiota by increasing the α-diversity with an increase in the abundance of beneficial genera (Rikenella, Turicibacter, Clostridium_sensu_stricto and Bifidobacterium) and a decrease in the abundance of the harmful Helicobacter genus. In summary, PCA could alleviate the TMAO-exacerbated atherosclerosis and inflammation, improve the lipid metabolism, and modulate gut microbiota.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Hidroxibenzoatos , Ratones , Animales , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Metilaminas , Inflamación/tratamiento farmacológico , Dieta con Restricción de Grasas
13.
Water Res ; 251: 121163, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266438

RESUMEN

Arsenic (As) is a toxic metalloid that causes severe environmental contamination worldwide. Upon exposure to aqueous phases, the As-bearing minerals, such as orpiment (As2S3) and realgar (As4S4), undergo oxidative dissolution, in which biotic and abiotic activities both contributed significant roles. Consequently, the dissolved As and S are rapidly discharged through water transportation to broader regions and contaminate surrounding areas, especially in aquatic environments. Despite both orpiment and realgar are frequently encountered in carbonate-hosted neutral environments, the microbial-mediated oxidative dissolution of these minerals, however, have been primarily investigated under acidic conditions. Therefore, the current study aimed to elucidate microbial-mediated oxidative dissolution under neutral aquatic conditions. The current study demonstrated that the dissolution of orpiment and realgar is synergistically regulated by abiotic (i.e., specific surface area (SSA) of the mineral) and biotic (i.e., microbial oxidation) factors. The initial dissolution of As(III) and S2- from minerals is abiotically impacted by SSA, while the microbial oxidation of As(III) and S2- accelerated the overall dissolution rates of orpiment and realgar. In As-contaminated environments, members of Thiobacillus and Rhizobium were identified as the major populations that mediated oxidative dissolution of orpiment and realgar by DNA-stable isotope probing. This study provides novel insights regarding the microbial-mediated oxidative dissolution process of orpiment and realgar under neutral conditions.


Asunto(s)
Arsénico , Arsenicales , Sulfuros , Minerales , Estrés Oxidativo
14.
Angew Chem Int Ed Engl ; 63(10): e202318360, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38189578

RESUMEN

End-groups halogenation strategies, generally refers to fluorination and chlorination, have been confirmed as simple and efficient methods to regulate the photoelectric performance of non-fullerene acceptors (NFAs), but a controversy over which one is better has existed for a long time. Here, two novel NFAs, C9N3-4F and C9N3-4Cl, featured with different end-groups were successfully synthesized and blended with two renowned donors, D18 and PM6, featured with different electron-withdrawing units. Detailed theoretical calculations and morphology characterizations of the interface structures indicate NFAs based on different end-groups possess different binding energy and miscibility with donors, which shows an obvious influence on phase-separation morphology, charge transport behavior and device performance. After verified by other three pairs of reported NFAs, a universal conclusion obtained as the devices based on D18 with fluorination-end-groups-based NFAs and PM6 with chlorination-end-groups-based NFAs generally show excellent efficiencies, high fill factors and stability. Finally, the devices based on D18: C9N3-4F and PM6: C9N3-4Cl yield outstanding efficiency of 18.53 % and 18.00 %, respectively. Suitably selecting donor and regulating donor/acceptor interface can accurately present the photoelectric conversion ability of a novel NFAs, which points out the way for further molecular design and selection for high-performance and stable organic solar cells.

15.
J Agric Food Chem ; 72(4): 2309-2320, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252882

RESUMEN

Phytosterol ferulate (PF) is quantitively low in rice, corn, wheat, oats, barley, and millet, but it is potentially effective in reducing plasma lipids. In this study, PF was synthesized for the first time using acidic ionic liquids as a catalyst. The product was purified, characterized using Fourier transform infrared, mass spectroscopy, and nuclear magnetic resonance, and ultimately confirmed as the desired PF compound. The conversion of phytosterol surpassed an impressive 99% within just 2 h, with a selectivity for PF exceeding 83%. Plasma lipid-lowering activity of PF was further investigated by using C57BL/6J mice fed a high-fat diet as a model. Supplementation of 0.5% PF into diet resulted in significant reductions in plasma total cholesterol, triacylglycerols, and nonhigh-density lipoprotein cholesterol by 13.7, 16.9, and 46.3%, respectively. This was accompanied by 55.8 and 36.3% reductions in hepatic cholesterol and total lipids, respectively, and a 22.9% increase in fecal cholesterol excretion. Interestingly, PF demonstrated a higher lipid-lowering activity than that of its substrates, a physical mixture of phytosterols and ferulic acid. In conclusion, an efficient synthesis of PF was achieved for the first time, and PF had the great potential to be developed as a lipid-lowering dietary supplement.


Asunto(s)
Líquidos Iónicos , Fitosteroles , Animales , Ratones , Colesterol , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Lipoproteínas/química , Lipoproteínas/metabolismo
16.
J Colloid Interface Sci ; 659: 160-177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160645

RESUMEN

The self-discharge by corrosion of zinc-air batteries (ZABs) will result in the reduced coulombic efficiency and lower energy efficiency. The additives in electrolyte should not only inhibit the occurrence of self-corrosion during battery dormancy, but also achieve a stable cycle of adsorption-desorption during battery operation, improving the durability of discharge cycles. But the former requires strong binding between additives and zinc to form a dense protective film, while the latter requires easy desorption of additives and zinc without affecting discharge power, which is contradictory to balance. In this study, a dynamic combination of additives and zinc, as well as a design of multi-channel strategy for the corresponding protective layer, have been proposed to solve the issues of self-corrosion and discharge cycle stability. Specifically, the surfactant (octylphenol polyoxyethylene ether phosphate (OP-10P)) and 1,10-decanedithiol (DD) have been selected as the combined anti-corrosion additives in ZABs with concentrated alkaline solution. The synergistic inhibition mechanism and the stabilization mechanism in zinc-air full cells have been studied systematically. The results indicated that the combined inhibitors inhibited the self-corrosion of Zn efficiently in the dormancy, and the inhibition efficiency reached 99.9 % at the optimized proportion. OP-10P achieve the preferential adsorption on the zinc surface, and then the chelates of DD with Zn2+ deposit on the outer layer to form the protective film with fine hydrophobic performance. The stability of ZABs in discharge and charging cycles has been improved owing to the multilayer adsorption film on zinc surface, which retains ion transport channels with the homogeneously pores to weaken the dendrites and side reactions during galvanostatic cycles. A probable model on zinc surface was established to discuss the actual working mechanism.

17.
Sci Rep ; 13(1): 22717, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123665

RESUMEN

This article aims to propose a method for computing the similarity between lengthy texts on intangible cultural heritage (ICH), to facilitate the swift and efficient acquisition of knowledge about it by the public and promote the dissemination and preservation of this culture. This proposed method builds on traditional text similarity techniques. The ultimate goal is to group together those lengthy texts on ICH that exhibit a high degree of similarity. First of all, the word2vec model is utilized to construct the feature word vector of music ICH communication. This includes the acquisition of long text data on music ICH, the word segmentation of music ICH communication based on the dictionary method in the field of ICH, and the creation of a word2vec model of music ICH communication. A clustering algorithm analyzes and categorizes ICH communication within the music. This procedure involves employing text semantic similarity, utilizing a similarity calculation method based on optimized Word Mover Distance (WMD), and designing long ICH communication clustering. The main objective of this analysis is to enhance the understanding and classification of the intricate nature of ICH within the musical realm. Finally, experiments are conducted to confirm the model's effectiveness. The results show that: (1) the text word vector training based on the word2vec model is highly accurate; (2) with the increase in K value, the effect of each category of intangible word vector is improving; (3) the final F1-measure value of the clustering experiment based on the optimized WMD is 0.84. These findings affirm the usefulness and accuracy of the proposed methodology.

18.
Virol J ; 20(1): 280, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031162

RESUMEN

BACKGROUND: Promyelocytic leukemia protein (PML) is a primary component of PML nuclear bodies (PML-NBs). PML and PML-NBs play critical roles in processes like the cell cycle, DNA damage repair, apoptosis, and the antiviral immune response. Previously, we identified five porcine PML alternative splicing variants and observed an increase in the expression of these PML isoforms following Japanese encephalitis virus (JEV) infection. In this study, we examined the functional roles of these PML isoforms in JEV infection. METHODS: PML isoforms were either knocked down or overexpressed in PK15 cells, after which they were infected with JEV. Subsequently, we analyzed the gene expression of PML isoforms, JEV, and the interferon (IFN)-ß signaling pathway using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Viral titers were determined through 50% tissue culture infectious dose (TCID50) assays. RESULTS: Our results demonstrated that the knockdown of endogenous PML promoted JEV replication, while the overexpression of PML isoforms 1, 3, 4, and 5 (PML1, PML3, PML4, and PML5) inhibited JEV replication. Further investigation revealed that PML1, PML3, PML4, and PML5 negatively regulated the expression of genes involved in the interferon (IFN)-ß signaling pathway by inhibiting IFN regulatory factor 3 (IRF3) post-JEV infection. CONCLUSIONS: These findings demonstrate that porcine PML isoforms PML1, PML3, PML4, and PML5 negatively regulate IFN-ß and suppress viral replication during JEV infection. The results of this study provide insight into the functional roles of porcine PML isoforms in JEV infection and the regulation of the innate immune response.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Porcinos , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Factores de Transcripción/genética , Interferones , Isoformas de Proteínas/genética , Replicación Viral
19.
Front Cell Infect Microbiol ; 13: 1239234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928180

RESUMEN

Promyelocytic leukemia (PML) protein constitutes an indispensable element within PML-nuclear bodies (PML-NBs), playing a pivotal role in the regulation of multiple cellular functions while coordinating the innate immune response against viral invasions. Simultaneously, numerous viruses elude immune detection by targeting PML-NBs. Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis, a severe neurological disease that affects humans and animals. However, the mechanism through which JEV evades immunity via PML-NBs has been scarcely investigated. In the present study, PK15 cells were infected with JEV, and the quantity of intracellular PML-NBs was enumerated. The immunofluorescence results indicated that the number of PML-NBs was significantly reduced in JEV antigen-positive cells compared to viral antigen-negative cells. Subsequently, ten JEV proteins were cloned and transfected into PK15 cells. The results revealed that JEV non-structural proteins, NS2B, NS3, NS4A, NS4B, and NS5, significantly diminished the quantity of PML-NBs. Co-transfection was performed with the five JEV proteins and various porcine PML isoforms. The results demonstrated that NS2B colocalized with PML4 and PML5, NS4A colocalized with PML1 and PML4, NS4B colocalized with PML1, PML3, PML4, and PML5, while NS3 and NS5 interacted with all five PML isoforms. Furthermore, ectopic expression of PML isoforms confirmed that PML1, PML3, PML4, and PML5 inhibited JEV replication. These findings suggest that JEV disrupts the structure of PML-NBs through interaction with PML isoforms, potentially leading to the attenuation of the host's antiviral immune response.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Antígenos Virales , Cuerpos Nucleares , Proteína de la Leucemia Promielocítica , Isoformas de Proteínas , Porcinos , Factores de Transcripción
20.
Environ Sci Technol ; 57(49): 20708-20717, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38032314

RESUMEN

Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.


Asunto(s)
Amoníaco , Óxidos , Temperatura , Oxidación-Reducción , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...